[go: up one dir, main page]

login
A362660
E.g.f. satisfies A(x) = exp( x * exp(x^2/2) * A(x) ).
1
1, 1, 3, 19, 161, 1791, 24847, 413449, 8036625, 178852753, 4486426091, 125279093259, 3854964555697, 129618443364463, 4728625129171959, 186034319795094481, 7851808690935373793, 353903271319498588641, 16966669198377512202643
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp( -LambertW(-x * exp(x^2/2)) ).
a(n) = n! * Sum_{k=0..floor(n/2)} (n-2*k)^k * (n-2*k+1)^(n-2*k-1) / (2^k * k! * (n-2*k)!).
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x*exp(x^2/2)))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 29 2023
STATUS
approved