%I #20 May 05 2024 16:42:18
%S 1,0,1,0,2,0,2,1,0,4,1,0,5,2,0,7,3,1,0,11,3,1,0,16,4,2,0,21,6,3,0,29,
%T 8,4,1,0,43,7,5,1,0,54,13,8,2,0,78,12,8,3,0,102,17,11,5,0,131,26,12,6,
%U 1,0,175,29,17,9,1,0,233,33,18,11,2,0,295,47,25
%N Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k modes.
%C A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.
%H Alois P. Heinz, <a href="/A362614/b362614.txt">Rows n = 0..800, flattened</a>
%F Sum_{k=0..A003056(n)} k * T(n,k) = A372542. - _Alois P. Heinz_, May 05 2024
%e Triangle begins:
%e 1
%e 0 1
%e 0 2
%e 0 2 1
%e 0 4 1
%e 0 5 2
%e 0 7 3 1
%e 0 11 3 1
%e 0 16 4 2
%e 0 21 6 3
%e 0 29 8 4 1
%e 0 43 7 5 1
%e 0 54 13 8 2
%e 0 78 12 8 3
%e 0 102 17 11 5
%e 0 131 26 12 6 1
%e 0 175 29 17 9 1
%e Row n = 8 counts the following partitions:
%e (8) (53) (431)
%e (44) (62) (521)
%e (332) (71)
%e (422) (3311)
%e (611)
%e (2222)
%e (3221)
%e (4211)
%e (5111)
%e (22211)
%e (32111)
%e (41111)
%e (221111)
%e (311111)
%e (2111111)
%e (11111111)
%t msi[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
%t Table[Length[Select[IntegerPartitions[n],Length[msi[#]]==k&]],{n,0,15},{k,0,Floor[(Sqrt[1+8n]-1)/2]}]
%Y Row sums are A000041.
%Y Row lengths are A002024.
%Y Removing columns 0 and 1 and taking sums gives A362607, ranks A362605.
%Y Column k = 1 is A362608, ranks A356862.
%Y This statistic (mode-count) is ranked by A362611.
%Y For co-modes we have A362615, ranked by A362613.
%Y A008284 counts partitions by length.
%Y A096144 counts partitions by number of minima, A026794 by maxima.
%Y A238342 counts compositions by number of minima, A238341 by maxima.
%Y A275870 counts collapsible partitions.
%Y Cf. A002865, A003056, A098859, A240219, A359893, A360071, A362609, A362610, A362612, A372542.
%K nonn,look,tabf
%O 0,5
%A _Gus Wiseman_, May 04 2023