[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361059
Decimal expansion of the asymptotic mean of A000005(k)/A286324(k), the ratio between the number of divisors and the number of bi-unitary divisors.
3
1, 1, 5, 8, 8, 5, 4, 5, 7, 2, 6, 5, 0, 3, 1, 2, 1, 0, 0, 1, 6, 4, 4, 8, 0, 1, 9, 6, 3, 9, 3, 1, 7, 5, 1, 4, 9, 0, 3, 9, 1, 0, 4, 3, 1, 8, 8, 5, 7, 3, 9, 5, 9, 6, 3, 4, 5, 2, 6, 1, 0, 6, 1, 5, 1, 4, 8, 2, 3, 3, 7, 9, 7, 4, 9, 3, 5, 4, 6, 4, 9, 0, 6, 6, 6, 5, 1, 3, 9, 2, 1, 7, 9, 2, 9, 5, 4, 7, 3, 9, 6, 2, 5, 7, 3
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Biunitary Divisor.
FORMULA
Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A000005(k)/A286324(k).
Equals Product_{p prime} (1 - (p-1)*log(1 - 1/p^2)/(2*p)).
EXAMPLE
1.158854572650312100164480196393175149039104318857395...
MATHEMATICA
$MaxExtraPrecision = 1000; m = 1000; f[p_] := 1 - (p - 1)*Log[1 - 1/p^2]/(2*p); c = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]]; RealDigits[Exp[NSum[Indexed[c, n]*PrimeZetaP[n], {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 106][[1]]
CROSSREFS
Cf. A000005, A286324, A361060 (mean of the inverse ratio).
Cf. A307869 (unitary analog), A308043.
Sequence in context: A153611 A068470 A069997 * A199373 A247037 A265274
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Mar 01 2023
STATUS
approved