Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Feb 28 2023 07:46:22
%S 2,9,6,0,0,8,0,3,0,2,0,2,4,9,4,1,4,1,0,4,8,1,8,2,0,4,7,8,1,1,0,8,9,4,
%T 6,9,3,9,2,8,4,3,9,0,9,5,9,2,5,1,6,3,4,1,1,9,6,7,5,0,4,4,8,0,8,6,6,3,
%U 3,9,3,5,7,8,7,3,7,3,8,2,4,9,5,8,4,6,2,6,7,3,8,5,0,1,0,8,0,5,1,7,8,6,0,6,6
%N Decimal expansion of a constant related to the asymptotics of A361012.
%F Equals limit_{n->oo} A361012(n) / n.
%F Equals Product_{p prime} (1 + Sum_{e>=2} (sigma(e) - sigma(e-1)) / p^e), where sigma = A000203.
%e 2.960080302024941410481820478110894693928439095925163411967504480866339...
%t $MaxExtraPrecision = 1000; smax = 500; Do[Clear[f]; f[p_] := 1 + Sum[(DivisorSigma[1, e] - DivisorSigma[1, e-1])/p^e, {e, 2, emax}]; cc = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, smax}], x, smax + 1]]; Print[f[2] * f[3] * f[5] * f[7] * Exp[N[Sum[cc[[n]]*(PrimeZetaP[n] - 1/2^n - 1/3^n - 1/5^n - 1/7^n), {n, 2, smax}], 120]]], {emax, 100, 1000, 100}]
%Y Cf. A361012, A327837, A327838.
%K nonn,cons
%O 1,1
%A _Vaclav Kotesovec_, Feb 28 2023