[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of multisets of positive integers whose right half (exclusive) sums to n.
17

%I #15 Mar 11 2023 15:07:42

%S 1,2,7,13,27,37,73,89,156,205,315,387,644,749,1104,1442,2015,2453,

%T 3529,4239,5926,7360,9624,11842,16115,19445,25084,31137,39911,48374,

%U 62559,75135,95263,115763,143749,174874,218614,261419,321991,388712,477439,569968,698493

%N Number of multisets of positive integers whose right half (exclusive) sums to n.

%H Andrew Howroyd, <a href="/A360673/b360673.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: 1 + Sum_{k>=1} x^k*(2 - x^k)/((1 - x^k)^(k+2) * Product_{j=1..k-1} (1-x^j)). - _Andrew Howroyd_, Mar 11 2023

%e The a(0) = 1 through a(3) = 13 multisets:

%e {} {1,1} {1,2} {1,3}

%e {1,1,1} {2,2} {2,3}

%e {1,1,2} {3,3}

%e {1,2,2} {1,1,3}

%e {2,2,2} {1,2,3}

%e {1,1,1,1} {1,3,3}

%e {1,1,1,1,1} {2,2,3}

%e {2,3,3}

%e {3,3,3}

%e {1,1,1,2}

%e {1,1,1,1,2}

%e {1,1,1,1,1,1}

%e {1,1,1,1,1,1,1}

%e For example, the multiset y = {1,1,1,1,2} has right half (exclusive) {1,2}, with sum 3, so y is counted under a(3).

%t Table[Length[Select[Join@@IntegerPartitions/@Range[0,3*k], Total[Take[#,Floor[Length[#]/2]]]==k&]],{k,0,15}]

%o (PARI) seq(n)={my(s=1 + O(x*x^n), p=s); for(k=1, n, s += p*x^k*(2-x^k)/(1-x^k + O(x*x^(n-k)))^(k+2); p /= 1 - x^k); Vec(s)} \\ _Andrew Howroyd_, Mar 11 2023

%Y The inclusive version is A360671.

%Y Column sums of A360672.

%Y The case of sets is A360954, inclusive A360955.

%Y The even-length case is A360956.

%Y A359893 and A359901 count partitions by median.

%Y First for prime indices, second for partitions, third for prime factors:

%Y - A360676 gives left sum (exclusive), counted by A360672, product A361200.

%Y - A360677 gives right sum (exclusive), counted by A360675, product A361201.

%Y - A360678 gives left sum (inclusive), counted by A360675, product A347043.

%Y - A360679 gives right sum (inclusive), counted by A360672, product A347044.

%Y Cf. A000041, A360616, A360617, A360674, A360675, A360953.

%K nonn

%O 0,2

%A _Gus Wiseman_, Mar 04 2023

%E Terms a(21) and beyond from _Andrew Howroyd_, Mar 11 2023