[go: up one dir, main page]

login
A360220
Maximum number of diagonal transversals in an orthogonal diagonal Latin square of order n.
3
1, 0, 0, 4, 5, 0, 27, 120, 333
OFFSET
1,4
COMMENTS
An orthogonal diagonal Latin square is a diagonal Latin square that has at least one orthogonal diagonal mate.
a(10) >= 866, a(11) >= 4828, a(12) >= 30192, a(13) >= 131106, a(17) >= 204995269, a(19) >= 11254190082.
For most orders n, at least one diagonal Latin square with the maximal number of diagonal transversals has an orthogonal mate and A287648(n) = a(n). Known exceptions: n=6 and n=10. - Eduard I. Vatutin, Feb 17 2023
Every orthogonal diagonal Latin square is a diagonal Latin square, so A287647(n) <= A354068(n) <= a(n) <= A287648(n). - Eduard I. Vatutin, Mar 04 2023
LINKS
E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan, and I. I. Kurochkin, On the construction of spectra of fast-computable numerical characteristics for diagonal Latin squares of small order, Intellectual and Information Systems (Intellect - 2021), Tula, 2021, pp. 7-17. (in Russian)
CROSSREFS
KEYWORD
nonn,more,hard
AUTHOR
Eduard I. Vatutin, Jan 30 2023
STATUS
approved