[go: up one dir, main page]

login
A369795
Binomial transform of A355408.
1
1, 3, 21, 225, 3201, 56913, 1214361, 30229545, 860016801, 27525472353, 978858962601, 38291126920665, 1634047719138801, 75542860973042193, 3761030066169432441, 200624240375801784585, 11415336789685550907201, 690117422445926970890433, 44175435307592982599575881
OFFSET
0,2
FORMULA
a(n) = 1 + Sum_{k=1..n} (3^k - 1) * binomial(n,k) * a(n-k) for n > 0.
E.g.f.: exp(x)/(1 + exp(x) - exp(3*x)). - Vaclav Kotesovec, Feb 01 2024
MATHEMATICA
nmax = 20; CoefficientList[Series[E^x/(1 + E^x - E^(3*x)), {x, 0, nmax}], x]*
Range[0, nmax]! (* Vaclav Kotesovec, Feb 01 2024*)
PROG
(SageMath)
def a(m):
if m==0:
return 1
else:
return 1+sum([(3^j-1)*binomial(m, j)*a(m-j) for j in [1, .., m]])
list(a(m) for m in [1, .., 50])
CROSSREFS
Cf. A355408.
Sequence in context: A267657 A303057 A354263 * A113663 A082545 A074638
KEYWORD
nonn
AUTHOR
STATUS
approved