[go: up one dir, main page]

login
A368588
Number of misère-play left dead end games born by day n.
0
1, 2, 4, 10, 52, 21278
OFFSET
0,2
COMMENTS
A partizan combinatorial game G is a left dead end if no subposition of G has any left options. In normal play, every left dead end is equal to a nonpositive integer. In misère play, the left dead ends have a more intricate structure; this sequence counts the misère-inequivalent left dead ends with birthday <= n.
REFERENCES
E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982.
LINKS
Aaron N. Siegel, On the general dead-ending universe of partizan games, arXiv:2312.16259 [math.CO], 2023.
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Aaron N. Siegel, Dec 31 2023
STATUS
approved