[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368566
a(n) = number of pairs (p,q) of partitions of n such that d(p,q) > o(p,q), where d and o are distance functions; see Comments.
3
0, 2, 6, 18, 34, 48, 62, 108, 166, 242, 334, 512, 706, 984, 1368, 1876, 2492, 3360, 4422, 5848, 7574, 9792, 12596, 16130, 20412, 25850
OFFSET
1,2
COMMENTS
The definition of d depends on the greedy ordering of the partitions p(i) of n; that is, p(1) >= p(2) >= ... >= p(k), where k = A000041(n); see A366156. The ordinal distance o is defined by o(p(i),p(j)) = |i-j|.
FORMULA
A368564(n) + A368565(n) + a(n) = A001255(n) for n >= 1.
EXAMPLE
The 5 partitions of 4 are (p(1),p(2),p(3),p(4),p(5)) = (4,21,22,211,1111). The following table shows the 25 pairs d(p(i),q(j)) and o(p(i),q(j)):
| 4 31 22 211 1111
------------------------------------------------
4 d | 0 2 4 4 6
o | 0 1 2 3 4
31 d | 2 0 2 2 4
o | 1 0 1 2 3
22 d | 4 2 0 2 4
o | 2 1 0 1 2
211 d | 4 2 2 0 2
o | 3 2 1 0 1
1111 d | 6 4 4 2 0
o | 4 3 2 1 0
The table shows 18 pairs (p,q) for which d(p,q) > o(p,q), so a(4) = 18.
MATHEMATICA
c[n_] := PartitionsP[n];
q[n_, k_] := q[n, k] = IntegerPartitions[n][[k]];
r[n_, k_] := r[n, k] = Join[q[n, k], ConstantArray[0, n - Length[q[n, k]]]];
d[u_, v_] := Total[Abs[u - v]];
p[n_] := Flatten[Table[d[r[n, j], r[n, k]] - Abs[j - k], {j, 1, c[n]}, {k, 1, c[n]}]];
Table[Count[p[n], 0], {n, 1, 16}] (* A368565 *)
Table[Length[Select[p[n], Sign[#] == -1 &]], {n, 1, 16}] (* A368566 *)
Table[Length[Select[p[n], Sign[#] == 1 &]], {n, 1, 16}] (* A368567 *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Clark Kimberling, Dec 31 2023
STATUS
approved