Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Jan 20 2024 09:46:38
%S 1,2,3,7,15,43,57,60,82,134,184,247,331,451,562,771,985,1277,1630,
%T 2071,2640,3344,4119,5195,6514,8062
%N a(n) = number of pairs (p,q) of partitions of n such that d(p,q) = o(p,q), where d and o are distance functions; see Comments.
%C The definition of d depends on the greedy ordering of the partitions p(i) of n; that is, p(1) >= p(2) >= ... >= p(k), where k = A000041(n); see A366156. The ordinal distance o is defined by o(p(i),p(j)) = |i-j|.
%F a(n) + A368565(n) + A368566(n) = A001255(n) for n >= 1.
%e The 5 partitions of 4 are (p(1),p(2),p(3),p(4),p(5)) = (4,21,22,211,1111). The following table shows the 25 pairs d(p(i),q(j)) and o(p(i),q(j)):
%e | 4 31 22 211 1111
%e ------------------------------------------------
%e 4 d | 0 2 4 4 6
%e o | 0 1 2 3 4
%e 31 d | 2 0 2 2 4
%e o | 1 0 1 2 3
%e 22 d | 4 2 0 2 4
%e o | 2 1 0 1 2
%e 211 d | 4 2 2 0 2
%e o | 3 2 1 0 1
%e 1111 d | 6 4 4 2 0
%e o | 4 3 2 1 0
%e The table shows 7 pairs (p,q) for which d(p,q) = o(p,q), so a(4) = 7.
%t c[n_] := PartitionsP[n];
%t q[n_, k_] := q[n, k] = IntegerPartitions[n][[k]];
%t r[n_, k_] := r[n, k] = Join[q[n, k], ConstantArray[0, n - Length[q[n, k]]]];
%t d[u_, v_] := Total[Abs[u - v]];
%t p[n_] := Flatten[Table[d[r[n, j], r[n, k]] - Abs[j - k], {j, 1, c[n]}, {k, 1, c[n]}]];
%t Table[Count[p[n], 0], {n, 1, 16}] (* A368565 *)
%t Table[Length[Select[p[n], Sign[#] == -1 &]], {n, 1,16}] (* A368566 *)
%t Table[Length[Select[p[n], Sign[#] == 1 &]], {n, 1, 16}] (* A368567 *)
%Y Cf. A000041, A001255, A366156, A368565, A368566.
%K nonn,more
%O 1,2
%A _Clark Kimberling_, Dec 31 2023