[go: up one dir, main page]

login
A368000
a(n) is the numerator of the probability that a particular one of the A335573(n+1) fixed polyominoes corresponding to the free polyomino with binary code A246521(n+1) appears as the image of a simple random walk on the square lattice.
8
1, 1, 1, 1, 1, 4, 1, 1, 1, 97, 1, 1, 1, 8, 1, 1, 8, 8, 1, 1, 1, 867, 9565, 1, 1, 2495, 1, 262781, 389, 9565, 389, 262781, 1, 867, 1, 597, 389, 1, 631381, 597, 389, 1, 1, 389, 1, 597, 1, 1, 389, 597, 389, 1, 597, 2501, 412, 1, 2635, 1706571966622, 1706571966622, 1117, 1117
OFFSET
1,6
COMMENTS
In a simple random walk on the square lattice, draw a unit square around each visited point. a(n)/A368001(n) is the probability that, when the appropriate number of distinct points have been visited, the drawn squares form a particular one of the fixed polyominoes corresponding to the free polyomino with binary code A246521(n+1).
Can be read as an irregular triangle, whose n-th row contains A000105(n) terms, n >= 1.
FORMULA
a(n)/A368001(n) = (A367994(n)/A367995(n))/A335573(n+1).
EXAMPLE
As an irregular triangle:
1;
1;
1, 1;
1, 4, 1, 1, 1;
97, 1, 1, 1, 8, 1, 1, 8, 8, 1, 1, 1;
...
CROSSREFS
KEYWORD
nonn,frac,tabf
AUTHOR
STATUS
approved