[go: up one dir, main page]

login
A367934
a(n) is the smallest multiple of n that is an exponentially evil number (A262675).
3
1, 8, 27, 8, 125, 216, 343, 8, 27, 1000, 1331, 216, 2197, 2744, 3375, 32, 4913, 216, 6859, 1000, 9261, 10648, 12167, 216, 125, 17576, 27, 2744, 24389, 27000, 29791, 32, 35937, 39304, 42875, 216, 50653, 54872, 59319, 1000, 68921, 74088, 79507, 10648, 3375, 97336
OFFSET
1,2
COMMENTS
First differs from A356192 at n = 64.
LINKS
FORMULA
Multiplicative with a(p^e) = p^s(e), s(e) = min{k >= e, k is evil}.
a(n) = n * A367932(n).
a(n) >= n, with equality if and only if n is an exponentially evil number (A262675).
Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = Product_{p prime} f(1/p) = 0.623746285..., where f(x) = (1-x) * (1 + Sum_{k>=1} x^(4*k-s(k))), and s(k) is defined above.
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + Sum_{k>=1} 1/p^s(k)) = 1.70170328791367919805... .
MATHEMATICA
f[p_, e_] := Module[{k = e}, While[! EvenQ[DigitCount[k, 2 , 1]], k++]; p^k]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) s(e) = {my(k = e); while(hammingweight(k)%2, k++); k; };
a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^s(f[i, 2])); }
CROSSREFS
Similar sequences: A356192, A365684, A367933.
Sequence in context: A056551 A356193 A356192 * A053149 A102637 A250140
KEYWORD
nonn,easy,mult,base
AUTHOR
Amiram Eldar, Dec 05 2023
STATUS
approved