[go: up one dir, main page]

login
A367842
Decimal expansion of limit_{n->oo} Product_{k=1..n} Gamma(k/n)^(k/n^2).
4
1, 2, 3, 4, 5, 6, 0, 1, 9, 5, 3, 9, 7, 9, 9, 8, 9, 7, 3, 8, 1, 7, 4, 1, 8, 5, 3, 0, 0, 7, 8, 2, 7, 1, 8, 9, 4, 7, 4, 4, 3, 7, 2, 7, 7, 0, 9, 3, 9, 5, 6, 3, 0, 2, 4, 7, 5, 6, 6, 9, 9, 2, 0, 8, 2, 3, 4, 5, 7, 0, 6, 5, 4, 7, 1, 9, 5, 1, 8, 4, 1, 7, 2, 4, 6, 9, 9, 4, 8, 6, 3, 9, 0, 2, 6, 4, 1, 9, 3, 5, 0, 8, 6, 0, 4
OFFSET
1,2
COMMENTS
Limit_{n->oo} Product_{k=1..n} Gamma(k/n)^(1/n) = sqrt(2*Pi).
FORMULA
Equals (2*Pi)^(1/4) / A, where A = A074962 is the Glaisher-Kinkelin constant.
Equals A010767 * A092040 / A074962.
Equals exp(Integral_{x=0..1} x*log(Gamma(x)) dx).
EXAMPLE
1.23456019539799897381741853007827189474437277093956302475669920823457...
MATHEMATICA
RealDigits[(2*Pi)^(1/4)/Glaisher, 10, 120][[1]]
Exp[Integrate[x*Log[Gamma[x]], {x, 0, 1}]]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Dec 02 2023
STATUS
approved