[go: up one dir, main page]

login
A367676
a(n) is the denominator of the probability that a particular one of the A335573(n+1) fixed polyominoes corresponding to the free polyomino with binary code A246521(n+1) appears in the version of the Eden growth model described in A367671 when n square cells have been added.
8
1, 2, 6, 6, 112, 21, 336, 21, 24, 8064, 504, 84, 2520, 40320, 1008, 504, 8064, 8064, 504, 672, 120, 399168, 39916800, 1155, 30240, 18144, 528, 241920, 26880, 36288, 4435200, 1814400, 480, 181440, 480, 2217600, 3991680, 528, 20736, 36288, 362880, 378, 110880, 4435200, 36960, 201600, 5040, 13860, 295680, 5702400, 4435200, 13860, 103680, 50400, 1814400, 720
OFFSET
1,2
COMMENTS
Can be read as an irregular triangle, whose n-th row contains A000105(n) terms, n >= 1.
Terms on the n-th row are (2*n-1)-smooth.
FORMULA
A367675(n)/a(n) = (A367671(n)/A367672(n))/A335573(n+1).
EXAMPLE
As an irregular triangle:
1;
2;
6, 6;
112, 21, 336, 21, 24;
8064, 504, 84, 2520, 40320, 1008, 504, 8064, 8064, 504, 672, 120;
...
CROSSREFS
KEYWORD
nonn,frac,tabf
AUTHOR
STATUS
approved