OFFSET
1,1
COMMENTS
Prime signature of a(n) is 2 followed by at least one 1.
The asymptotic density of this sequence is (6/Pi^2) * Sum_{p prime} (1/p^2) * (Product_{primes q <= p} (q/(q+1))) = 0.155068688392... . - Amiram Eldar, Dec 18 2023
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10000
EXAMPLE
a(1) = 12 = 4*3 = p^2 * m, squarefree m > 1; sqrt(4) < lpf(3), i.e., 2 < 3.
a(5) = 45 = 9*5 = p^2 * m, squarefree m > 1; sqrt(9) < lpf(5), i.e., 3 < 5.
Prime powers p^k, k > 2, are not in the sequence since m = p^(k-2) is not squarefree and p = lpf(m).
MATHEMATICA
Select[Select[Range[500], PrimeOmega[#] > PrimeNu[#] > 1 &], First[#1] == 2 && Union[#2] == {1} & @@ TakeDrop[FactorInteger[#][[All, -1]], 1] &]
PROG
(PARI) is(n) = {my(e = factor(n)[, 2]); #e > 1 && e[1] == 2 && vecmax(e[2..#e]) == 1; } \\ Amiram Eldar, Dec 18 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael De Vlieger, Dec 15 2023
STATUS
approved