[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364303
Square array read by ascending antidiagonals: T(n,k) = [x^k] (1 - x)^(2*k) * Legendre_P(n*k, (1 + x)/(1 - x)) for n, k >= 0.
8
1, 1, -2, 1, 0, 6, 1, 4, -6, -20, 1, 10, 36, 0, 70, 1, 18, 300, 400, 90, -252, 1, 28, 1050, 11440, 4900, 0, 924, 1, 40, 2646, 77616, 485100, 63504, -1680, -3432, 1, 54, 5544, 316540, 6370650, 21841260, 853776, 0, 12870, 1, 70, 10296, 972400, 42031990, 554822268, 1022041020, 11778624, 34650, -48620
OFFSET
0,3
COMMENTS
The first row of the table is a signed version of the central binomial coefficients A000984. The central binomial coefficients satisfy the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p ^(3*r)) for all primes p >= 5 and all positive integers n and r (see Meštrović, equation 39). We conjecture that each row sequence of the table satisfies the same supercongruences.
FORMULA
T(n,k) = Sum_{i = 0..k} binomial(n*k, k-i)^2 * binomial((n-2)*k+i-1, i).
For n >= 2, T(n,k) = binomial((n-1)*k, k)^2 * hypergeom([a, b, b], [1 + a - b, 1 + a - b], 1), where a = (n - 3)*k and b = -k.
For n >= 3, T(n,k) = ((n - 1)*k)! * ((n + 1)*k/2)! * ((n - 3)*k/2)! / ( ((n - 1)*k/2)!^2 * k!^2 * ((n - 3)*k)! ) by Dixon's 3F2 summation theorem, where fractional factorials are defined in terms of the gamma function.
EXAMPLE
Square array begins:
n\k| 0 1 2 3 4 5
- + - - - - - - - - - - - - - - - - - - - - - - - - -
0 | 1 -2 6 -20 70 -252 ... (-1)^k*A000984(k)
1 | 1 0 -6 0 90 0 ... A245086
2 | 1 4 36 400 4900 63504 ... A002894
3 | 1 10 300 11440 485100 21841260 ... A275652
4 | 1 18 1050 77616 6370650 554822268 ... A275653
5 | 1 28 2646 316540 42031990 5921058528 ... A275654
6 | 1 40 5544 972400 189290920 39089615040 ... A275655
7 | 1 54 10296 2484000 665091000 188907932304 ... A364304
8 | 1 70 17550 5567380 1960044750 732012601320 ... A364305
MAPLE
T(n, k) := coeff(series( (1 - x)^(2*k) * LegendreP(n*k, (1 + x)/(1 - x)), x, 11), x, k):
# display as a square array
seq(print(seq(T(n, k), k = 0..10)), n = 0..10);
# display as a sequence
seq(seq(T(n-k, k), k = 0..n), n = 0..10);
CROSSREFS
Cf. A000984 (row 0 unsigned), A245086 (row 1), A002894 (row 2), A275652 (row 3), A275653 (row 4), A275654 (row 5), A275655 (row 6), A364304 (row 7), A364305 (row 8).
Sequence in context: A119275 A129462 A122930 * A364518 A066387 A180663
KEYWORD
sign,tabl,easy
AUTHOR
Peter Bala, Jul 19 2023
STATUS
approved