[go: up one dir, main page]

login
A364210
a(n) = (1/(2*n)) * Sum_{d|n} 3^(n/d-1) * phi(3*d).
2
1, 2, 4, 8, 17, 44, 105, 278, 733, 1978, 5369, 14792, 40881, 113934, 318884, 896948, 2532161, 7174862, 20390553, 58114072, 166037460, 475473286, 1364393897, 3922640132, 11297181473, 32588043882, 94143179560, 272342824320, 788854912241, 2287679406940, 6641649422409
OFFSET
1,2
FORMULA
G.f.: (-1/2) * Sum_{k>0} phi(3*k) * log(1-3*x^k)/(3*k).
MATHEMATICA
a[n_] := DivisorSum[n, 3^(n/#-1)*EulerPhi[3*#]/(2*n) &]; Array[a, 30] (* Amiram Eldar, Jul 14 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, 3^(n/d-1)*eulerphi(3*d))/(2*n);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 13 2023
STATUS
approved