[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353923
Product_{n>=1} (1 + a(n)*x^n) = 1 + Sum_{n>=1} tau(n)*x^n, where tau = A000005.
4
1, 2, 0, 3, -1, -1, -1, 9, 1, -7, 0, 4, -1, -19, 2, 94, -2, -57, 2, 81, -4, -186, 3, 226, 3, -632, -2, 1040, 1, -2060, -15, 10975, 17, -7720, -1, 13980, 9, -27595, -18, 50432, -10, -97582, 24, 191827, -17, -364695, 27, 580609, -37, -1338741, 45, 2658068, -11, -4909146, -98
OFFSET
1,2
FORMULA
Product_{n>=1} (1 + a(n)*x^n) = 1 + Sum_{n>=1} x^n / (1 - x^n).
MATHEMATICA
A[m_, n_] := A[m, n] = Which[m == 1, DivisorSigma[0, n], m > n >= 1, 0, True, A[m - 1, n] - A[m - 1, m - 1] A[m, n - m + 1]]; a[n_] := A[n, n]; a /@ Range[1, 55]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, May 11 2022
STATUS
approved