[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353388
Numbers k such that 2*k^2 + 29 is neither a prime nor a semiprime.
3
185, 187, 232, 247, 261, 309, 311, 370, 371, 373, 435, 442, 464, 479, 501, 516, 520, 553, 557, 561, 590, 614, 619, 620, 621, 627, 638, 667, 701, 702, 705, 708, 714, 738, 755, 769, 796, 797, 802, 812, 836, 849, 853, 856, 869, 874, 890, 896, 899, 903, 906, 915, 943, 957, 960, 964, 973, 990
OFFSET
1,1
COMMENTS
If k is a term, then so is k + j*(2*k^2+29) for all natural numbers j. - Robert Israel, Jul 23 2023
LINKS
MAPLE
select(k -> numtheory:-bigomega(2*k^2+29) > 2, [$1..1000]); # Robert Israel, Jul 23 2023
MATHEMATICA
Select[Range[1000], PrimeOmega[2*#^2 + 29] >= 3 &] (* Amiram Eldar, Apr 17 2022 *)
PROG
(PARI) for(k=0, 1000, if(bigomega(2*k^2+29) >= 3, print1(k, ", ")))
(Python)
from sympy import primeomega
def ok(n): return primeomega(2*n**2 + 29) >= 3
print([k for k in range(1000) if ok(k)]) # Michael S. Branicky, Apr 16 2022
CROSSREFS
Sequence in context: A232915 A139265 A243628 * A262053 A362096 A157297
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Apr 16 2022
STATUS
approved