[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353357
Numbers k for which A353328(k) < A353329(k). Positions of -1's in A353354.
5
3, 7, 13, 19, 21, 24, 29, 37, 39, 42, 43, 53, 56, 57, 61, 71, 78, 79, 81, 87, 89, 91, 101, 104, 105, 107, 111, 113, 114, 129, 131, 133, 139, 151, 152, 159, 163, 168, 173, 174, 181, 182, 183, 189, 192, 193, 195, 199, 203, 213, 222, 223, 229, 231, 232, 237, 239, 247, 251, 258, 259, 263, 266, 267, 271, 281, 285, 293
OFFSET
1,1
COMMENTS
For any term k present here, A003961(k) is present in A353356.
FORMULA
a(n : n >= 1} = {m : tau(m) * A048675(m) == 1 (mod 3)}, where tau is the number of divisors function, A000005.
PROG
(PARI)
A332823(n) = { my(f = factor(n), u=(sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2)%3); if(2==u, -1, u); };
A353354(n) = sumdiv(n, d, A332823(d));
isA353357(n) = (0>A353354(n));
(PARI)
A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
isA353357(n) = (1==((numdiv(n)*A048675(n))%3));
KEYWORD
nonn
AUTHOR
Antti Karttunen and Peter Munn, Apr 15 2022
STATUS
approved