[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353235
Number of divisors of n whose arithmetic derivative is odd.
5
0, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 2, 1, 1, 4, 1, 3, 2, 3, 1, 3, 1, 3, 2, 3, 1, 6, 1, 1, 2, 3, 2, 4, 1, 3, 2, 3, 1, 6, 1, 3, 3, 3, 1, 3, 1, 4, 2, 3, 1, 6, 2, 3, 2, 3, 1, 6, 1, 3, 3, 1, 2, 6, 1, 3, 2, 6, 1, 4, 1, 3, 3, 3, 2, 6, 1, 3, 2, 3, 1, 6, 2, 3, 2, 3, 1, 9, 2, 3, 2, 3
OFFSET
1,6
COMMENTS
Inverse Möbius transform of (n' mod 2), where n' is the arithmetic derivative of n (A003415). - Wesley Ivan Hurt, Jun 29 2024
LINKS
FORMULA
a(n) = Sum_{d|n} ((d') mod 2).
a(n) = tau(n)/2 - (1/2) * Sum_{d|n} (-1)^(d').
a(n) = A000005(n) - A353236(n).
a(n) = A000005(n)/2 - A353237(n)/2.
From Robert Israel, Jun 05 2023: (Start)
If n = 2^k * m where m is odd and k >= 1, a(n) = a(m) + A000005(m).
If n is odd and squarefree, a(n) = 2^(A001222(n)-1).
If p is an odd prime, a(p^k) = ceil(k/2).
If k and m are odd, a(k*m) = A000005(k)*a(m) + A000005(m)*a(k) - 2*a(m)*a(k).
(End)
EXAMPLE
a(12) = 3; 12 has 3 divisors whose arithmetic derivatives are odd: 2' = 1, 3' = 1, and 6' = 5.
MAPLE
aderodd:= proc(n) local t; option remember;
(n*add(t[2]/t[1], t=ifactors(n)[2]))::odd
end proc:
f:= proc(n) local t;
nops(select(aderodd, numtheory:-divisors(n)))
end proc:
map(f, [$1..100]); # Robert Israel, Jun 05 2023
MATHEMATICA
d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); a[n_] := DivisorSum[n, 1 &, OddQ[d[#]] &]; Array[a, 100] (* Amiram Eldar, May 02 2022 *)
PROG
(PARI) ad(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
a(n) = sumdiv(n, d, ad(d) % 2); \\ Michel Marcus, May 02 2022
CROSSREFS
Cf. A000005 (tau), A003415 (n'), A353236, A353237.
Sequence in context: A095345 A342671 A132468 * A243915 A367482 A367095
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, May 01 2022
STATUS
approved