[go: up one dir, main page]

login
A352994
Number of copies of the star graph S(2,2,1) contained within the n-dimensional hypercube graph.
2
0, 0, 72, 1536, 14400, 92160, 470400, 2064384, 8128512, 29491200, 100362240, 324403200, 1005109248, 3005743104, 8722022400, 24662507520, 68183654400, 184817811456, 492285984768, 1291006771200, 3338686955520, 8526181171200, 21526669688832, 53788022931456
OFFSET
1,3
COMMENTS
S(2,2,1) is the star graph with two legs of length two and one of length one.
FORMULA
a(n) = (2^n)*(C(n,3))*(3n)*(n-2).
G.f.: 24*x^3*(3 + 28*x + 12*x^2)/(1 - 2*x)^6. - Stefano Spezia, Apr 15 2022
Sum_{n>=3} 1/a(n) = 13/32 + 3*log(2)^2/16 - log(2)/4 - Pi^2/32. - Amiram Eldar, Apr 22 2022
MATHEMATICA
a[n_] := (2^n)*Binomial[n, 3]*3*n*(n-2); Array[a, 24] (* Amiram Eldar, Apr 22 2022 *)
PROG
(Python) from math import comb
def a(n):
return (2**n)*comb(n, 3)*3*n*(n-2)
CROSSREFS
Sequence in context: A292881 A282018 A037251 * A234209 A280807 A268749
KEYWORD
easy,nonn
AUTHOR
Ben Eck, Apr 14 2022
STATUS
approved