[go: up one dir, main page]

login
A352989
Composites k such that the k-th triangular number is divisible by the integer log of k.
3
8, 15, 16, 27, 44, 54, 72, 84, 90, 95, 105, 125, 143, 150, 180, 195, 231, 256, 264, 287, 288, 308, 315, 319, 328, 351, 390, 423, 440, 483, 495, 512, 528, 540, 558, 559, 560, 576, 588, 608, 624, 627, 645, 648, 650, 728, 800, 805, 819, 840, 855, 870, 884, 896, 897, 924, 935, 945, 960, 975, 987
OFFSET
1,1
COMMENTS
Composites k such that A000217(k) is divisible by A001414(k).
Contains all odd members of A046346, and in particular p^(p^k) if p is an odd prime and k >= 1.
LINKS
EXAMPLE
a(5) = 44 = 2*2*11 is a term because it is composite and A000217(44) = 44*45/2 = 990 is divisible by 2+2+11 = 15.
MAPLE
filter:= proc(n) local t; not isprime(n) and (n*(n+1)/2/add(t[1]*t[2], t=ifactors(n)[2]))::integer end proc:
select(filter, [$4..1000]);
MATHEMATICA
Select[Range[1000], CompositeQ[#] && Divisible[#*(# + 1)/2, Plus @@ Times @@@ FactorInteger[#]] &] (* Amiram Eldar, Apr 13 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Apr 13 2022
STATUS
approved