[go: up one dir, main page]

login
A352812
Lexicographically earliest sequence of distinct nonnegative integers such that for any n and k coprime the binary expansions of a(n) and a(k) have no common 1's.
1
0, 1, 2, 4, 8, 3, 16, 5, 32, 9, 64, 6, 128, 17, 10, 256, 512, 7, 1024, 12, 18, 65, 2048, 33, 4096, 129, 34, 20, 8192, 11, 16384, 257, 66, 260, 24, 35, 32768, 261, 130, 13, 65536, 19, 131072, 68, 40, 2049, 262144, 36, 524288, 264, 514, 132, 1048576, 37, 72, 21
OFFSET
1,3
COMMENTS
The n-th row of A038566 gives the k's to consider when computing a(n).
LINKS
Rémy Sigrist, Colored logarithmic scatterplot of the first 10000 terms (where the color is function of A052126(n))
Rémy Sigrist, PARI program
EXAMPLE
The first terms, alongside their binary expansion, the corresponding k's and the implied forbidden bits, are:
n a(n) bin(a(n)) k's bin(forbidden)
-- ---- --------- ------------------------------- --------------
1 0 0 {1} 0
2 1 1 {1} 0
3 2 10 {1, 2} 1
4 4 100 {1, 3} 10
5 8 1000 {1, 2, 3, 4} 111
6 3 11 {1, 5} 1000
7 16 10000 {1, 2, 3, 4, 5, 6} 1111
8 5 101 {1, 3, 5, 7} 11010
9 32 100000 {1, 2, 4, 5, 7, 8} 11101
10 9 1001 {1, 3, 7, 9} 110010
11 64 1000000 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 111111
12 6 110 {1, 5, 7, 11} 1011000
PROG
(PARI) See Links section.
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Apr 04 2022
STATUS
approved