[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. LambertW( -x/(1-x) ) / (-x).
28

%I #30 Mar 04 2024 10:03:39

%S 1,2,9,67,717,10141,179353,3816989,95076537,2714895433,87457961421,

%T 3138260371225,124147801973605,5368353187693757,251928853285058433,

%U 12752446755011776741,692625349011401620209,40178978855796929378065,2479383850197948228950293

%N Expansion of e.g.f. LambertW( -x/(1-x) ) / (-x).

%C An interesting property of this e.g.f. A(x) is that the sum of coefficients of x^k, k=0..n, in 1/A(x)^n equals zero, for n > 1.

%H Seiichi Manyama, <a href="/A352410/b352410.txt">Table of n, a(n) for n = 0..370</a>

%F E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies:

%F (1) A(x) = LambertW( -x/(1-x) ) / (-x).

%F (2) A(x) = exp( x*A(x) ) / (1-x).

%F (3) A(x) = log( (1-x) * A(x) ) / x.

%F (4) A( x/(exp(x) + x) ) = exp(x) + x.

%F (5) A(x) = (1/x) * Series_Reversion( x/(exp(x) + x) ).

%F (6) Sum_{k=0..n} [x^k] 1/A(x)^n = 0, for n > 1.

%F (7) [x^(n+1)/(n+1)!] 1/A(x)^n = -n for n >= (-1).

%F a(n) ~ (1 + exp(1))^(n + 3/2) * n^(n-1) / exp(n + 1/2). - _Vaclav Kotesovec_, Mar 15 2022

%F a(n) = n! * Sum_{k=0..n} (k+1)^(k-1) * binomial(n,k)/k!. - _Seiichi Manyama_, Sep 24 2022

%e E.g.f.: A(x) = 1 + 2*x + 9*x^2/2! + 67*x^3/3! + 717*x^4/4! + 10141*x^5/5! + 179353*x^6/6! + 3816989*x^7/7! + ...

%e such that A(x) = exp(x*A(x)) / (1-x), where

%e exp(x*A(x)) = 1 + x + 5*x^2/2! + 40*x^3/3! + 449*x^4/4! + 6556*x^5/5! + 118507*x^6/6! + ... + A052868(n)*x^n/n! + ...

%e which equals LambertW(-x/(1-x)) * (1-x)/(-x).

%e Related table.

%e Another defining property of the e.g.f. A(x) is illustrated here.

%e The table of coefficients of x^k/k! in 1/A(x)^n begins:

%e n=1: [1, -2, -1, -7, -71, -961, -16409, -339571, ...];

%e n=2: [1, -4, 6, -2, -24, -362, -6644, -144538, ...];

%e n=3: [1, -6, 21, -33, -3, -63, -1395, -34275, ...];

%e n=4: [1, -8, 44, -148, 232, -4, -152, -4876, ...];

%e n=5: [1, -10, 75, -395, 1305, -2045, -5, -355, ...];

%e n=6: [1, -12, 114, -822, 4224, -13806, 21636, -6, ...];

%e n=7: [1, -14, 161, -1477, 10381, -52507, 170401, -267043, -7, ...];

%e ...

%e from which we can illustrate that the partial sum of coefficients of x^k, k=0..n, in 1/A(x)^n equals zero, for n > 1, as follows:

%e n=1:-1 = 1 + -2;

%e n=2: 0 = 1 + -4 + 6/2!;

%e n=3: 0 = 1 + -6 + 21/2! + -33/3!;

%e n=4: 0 = 1 + -8 + 44/2! + -148/3! + 232/4!;

%e n=5: 0 = 1 + -10 + 75/2! + -395/3! + 1305/4! + -2045/5!;

%e n=6: 0 = 1 + -12 + 114/2! + -822/3! + 4224/4! + -13806/5! + 21636/6!;

%e n=7: 0 = 1 + -14 + 161/2! + -1477/3! + 10381/4! + -52507/5! + 170401/6! + -267043/7!;

%e ...

%o (PARI) {a(n) = n!*polcoeff( (1/x)*serreverse( x/(exp(x +x^2*O(x^n)) + x) ),n)}

%o for(n=0,30,print1(a(n),", "))

%o (PARI) my(x='x+O('x^30)); Vec(serlaplace(lambertw(-x/(1-x))/(-x))) \\ _Michel Marcus_, Mar 17 2022

%o (PARI) a(n) = n!*sum(k=0, n, (k+1)^(k-1)*binomial(n, k)/k!); \\ _Seiichi Manyama_, Sep 24 2022

%Y Cf. A352411, A352412, A352448, A052868.

%Y Cf. A102743, A108919, A331726.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Mar 15 2022