[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351992
Number of minimum edge covers in the n-vertex wheel graph.
0
0, 1, 4, 3, 14, 5, 30, 7, 52, 9, 80, 11, 114, 13, 154, 15, 200, 17, 252, 19, 310, 21, 374, 23, 444, 25, 520, 27, 602, 29, 690, 31, 784, 33, 884, 35, 990, 37, 1102, 39, 1220, 41, 1344, 43, 1474, 45, 1610, 47, 1752, 49, 1900, 51, 2054, 53, 2214, 55, 2380, 57, 2552, 59, 2730
OFFSET
1,3
COMMENTS
The wheel graph is well defined on n >= 4 vertices; sequence extended to n = 1 using the formulas/generating function.
LINKS
Eric Weisstein's World of Mathematics, Minimum Edge Cover
Eric Weisstein's World of Mathematics, Wheel Graph
FORMULA
a(n) = n - 1 for n == 0 (mod 2).
a(n) = (n - 1)*(3*n + 1)/4 for n == 1 (mod 2).
a(n) = (3*n^2 + 2*n - 3*(-1)^n*(n - 1)^2 - 5)/8.
G.f.: x^2*(-1 - 5*x - x^3 + x^4)/(-1 + x^2)^3.
E.g.f.: (4 + (x - 4)*cosh(x) + (3*x^2 + 4*x - 1)*sinh(x))/4. - Stefano Spezia, Mar 15 2022
MATHEMATICA
Table[Piecewise[{{n - 1, Mod[n, 2] == 0}, {(n - 1) (3 n + 1)/4, Mod[n, 2] == 1}}, 0], {n, 20}]
LinearRecurrence[{0, 3, 0, -3, 0, 1}, {0, 1, 5, 3, 16, 5}, 20]
Table[(3 n^2 + 2 n - 3 (-1)^n (n - 1)^2 - 5)/8, {n, 20}]
CoefficientList[Series[x (-1 - 5 x - x^3 + x^4)/(-1 + x^2)^3, {x, 0, 20}], x]
CROSSREFS
Sequence in context: A019136 A298057 A140884 * A082383 A216486 A321262
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Feb 27 2022
STATUS
approved