[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351884
Irregular triangle read by rows: T(n,k) is the number of sets of lists with distinct block sizes (as in A088311(n)) and containing exactly k lists.
1
1, 0, 1, 0, 2, 0, 6, 6, 0, 24, 24, 0, 120, 240, 0, 720, 1440, 720, 0, 5040, 15120, 5040, 0, 40320, 120960, 80640, 0, 362880, 1451520, 1088640, 0, 3628800, 14515200, 14515200, 3628800, 0, 39916800, 199584000, 199584000, 39916800, 0, 479001600, 2395008000, 3353011200, 958003200
OFFSET
0,5
FORMULA
E.g.f.: Product_{i>=1} (1 + y*x^i).
Sum_{k=0..A003056(n)} (-1)^k * T(n,k) = A293140(n). - Alois P. Heinz, Feb 23 2022
EXAMPLE
Triangle T(n,k) begins:
1;
0, 1;
0, 2;
0, 6, 6;
0, 24, 24;
0, 120, 240;
0, 720, 1440, 720;
0, 5040, 15120, 5040;
0, 40320, 120960, 80640;
...
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+expand(x*b(n-i, min(i-1, n-i)))*n!/(n-i)!))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
seq(T(n), n=0..12); # Alois P. Heinz, Feb 23 2022
MATHEMATICA
nn = 13; Prepend[Map[Prepend[#, 0] &, Drop[Map[Select[#, # > 0 &] &, Range[0, nn]! CoefficientList[Series[Product[1 + y x^i, {i, 1, nn}], {x, 0, nn}], {x, y}]], 1]], {1}] // Grid
CROSSREFS
Columns k=0-1 give: A000007, A000142 (for n>=1).
Cf. A088311 (row sums).
T(A000217(n),n) gives A052295.
Sequence in context: A338465 A142354 A105110 * A342501 A064696 A021488
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Feb 23 2022
STATUS
approved