[go: up one dir, main page]

login
A351553
Even numbers k such that there are no odd prime factors p of k such that p would not divide A003961(k) and the valuation(k, p) would be different from valuation(sigma(k), p), where A003961 is fully multiplicative with a(p) = nextprime(p), and sigma is the sum of divisors function.
3
2, 6, 10, 14, 20, 22, 24, 28, 30, 34, 40, 42, 46, 54, 60, 62, 66, 70, 84, 94, 102, 106, 110, 114, 120, 130, 138, 140, 142, 154, 160, 168, 170, 174, 182, 186, 190, 198, 210, 214, 216, 220, 224, 230, 238, 254, 260, 264, 270, 280, 282, 290, 308, 310, 318, 322, 330, 340, 354, 374, 378, 380, 382, 390, 408, 410, 420, 426
OFFSET
1,1
COMMENTS
Even numbers k for which A351555(k) = 0.
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; A351555(n) = { my(s=sigma(n), f=factor(s), u=A003961(n)); sum(k=1, #f~, if((f[k, 1]%2) && 0!=(u%f[k, 1]), (valuation(n, f[k, 1])!=f[k, 2]), 0)); };
isA351553(n) = (!(n%2) && 0==A351555(n));
CROSSREFS
Even terms in A351554, positions of zeros at even indices in A351555.
Cf. A351543 (complement among even numbers).
Sequence in context: A284678 A367367 A185548 * A354715 A239221 A039956
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 16 2022
STATUS
approved