[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350599
Number of ways to partition the set of vertices of a convex n-gon into non-intersecting directed polygons.
0
2, 2, 2, 14, 30, 50, 170, 462, 1014, 2810, 7906, 19910, 53278, 148514, 397530, 1073918, 2976390, 8172426, 22413266, 62219830, 172846382, 479683762, 1338281802, 3743620974, 10475828630, 29389158426, 82643684034, 232644515366, 655928162878, 1852640651330, 5239096953274
OFFSET
3,1
COMMENTS
A directed polygon is a polygon with an associated direction (clockwise or counterclockwise).
Equivalently, the polygons can be colored using two colors. - Andrew Howroyd, Jan 09 2022
FORMULA
a(n) = Sum_{k=1..floor(n/3)} 2^k * binomial(n+1, k) * binomial(n-2*k-1, k-1) / (n+1).
a(n) = Sum_{k=1..floor(n/3)} 2^k * A350248(n,k). - Andrew Howroyd, Jan 09 2022
The compositional inverse of x+Sum_{k=1..infinity} a_k x^{k+1} is x(1-x)/(1+x)(1-2x+x^2). Proved at MathOverflow 418996.
EXAMPLE
a(7) = 2 + 28 = 30 since the 7-gon can be given two directions and the 7-gon can also be partitioned into a triangle and a quadrilateral in 7 different ways giving another 7 * 4 = 28 possibilities.
MATHEMATICA
a[n_] := Sum[2^k * Binomial[n + 1, k] * Binomial[n - 2*k - 1, k - 1]/(n + 1), {k, 1, Floor[n/3]}]; Array[a, 30, 3] (* Amiram Eldar, Jan 08 2022 *)
PROG
(PARI) a(n) = sum(k=1, n\3, 2^k * binomial(n+1, k) * binomial(n-2*k-1, k-1)) / (n+1) \\ Andrew Howroyd, Jan 08 2022
CROSSREFS
Sequence in context: A289068 A063898 A074052 * A361815 A349564 A129409
KEYWORD
nonn
AUTHOR
Janaka Rodrigo, Jan 08 2022
STATUS
approved