[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350559
Numerators of the fractional, multiplicative Van Eck Sequence f(n): for n >= 2, if there exists an m < n such that f(m) = f(n), take the largest such m. If f(n)=1, set f(n+1) = 1/(n-m); otherwise, if f(n) != 1, set f(n+1) = f(n)+f(m)(n-m). If no m exists such that a(m)= f(n), then set f(n+1)=1. Start with f(1)=1 and f(2)=0. a(n) = numerator(f(n)).
1
1, 0, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 4, 1, 1, 4, 16, 1, 1, 1, 1, 8, 1, 1, 10, 1, 1, 4, 52, 1, 1, 13, 1, 1, 8, 1, 1, 4, 44, 1, 1, 11, 1, 1, 8, 88, 1, 1, 2, 80, 1, 1, 5, 1, 1, 4, 1, 1, 4, 88, 440, 1, 1, 1, 1, 45, 1, 1, 11, 1, 1, 4, 56, 1, 1, 6, 1
OFFSET
1,7
EXAMPLE
f(n) = [ 1, 0, 1, 1/2, 1, 1/2, 3/2, 1, 1/3, 1, …]
MATHEMATICA
f[1]=1; f[n_]:=0; f2[n_]:=0; a[n_]:=Block[{q=f2[x]}, If[q!=0, If[x==1, s[n]=1/(n-1-q), s[n]=((n-1-q)*(x))+x], s[n]=1]]; s[1]=1; s[2]=0; x=0; Do[x=a[n]; f2[x]=f[x]; f[x]=n, {n, 3, 100000}]; data=Numerator/@Table[s[n], {n, 1, 100000}];
PROG
(Python)
from fractions import Fraction
from itertools import count, islice
def rfind(lst, item): # find item in list before last index
idx = len(lst) - 2
while lst[idx] != None and lst[idx] != item: idx -= 1
return idx
def agen(): # generator of terms
f = [None, Fraction(1, 1), Fraction(0, 1)]
yield from [1, 0]
for n in count(2):
m = rfind(f, f[n])
if m > 0: fp = Fraction(1, n-m) if f[n] == 1 else f[n] + f[m]*(n-m)
else: fp = Fraction(1, 1)
f.append(fp)
yield fp.numerator
print(list(islice(agen(), 82))) # Michael S. Branicky, Jan 16 2022
(PARI) findm(list, n) = {forstep (m=n-1, 1, -1, if (list[m] == list[n], return(m))); return(0); }
listf(nn) = {my(list = List([1, 0])); for (n=3, nn, my(m = findm(list, n-1)); if (m, if (list[m] == 1, listput(list, 1/(n-1-m)), listput(list, list[n-1]*(n-m))), listput(list, 1); ); ); Vec(list); }
listnum(nn) = apply(numerator, listf(nn)); \\ Michel Marcus, Jan 17 2022
CROSSREFS
Cf. A350228, A350560 (denominators).
Sequence in context: A362302 A336839 A291568 * A365401 A212181 A256452
KEYWORD
nonn,frac
AUTHOR
Jasmine Miller, Jan 05 2022
STATUS
approved