[go: up one dir, main page]

login
A350032
Write n as n = k1 + k2 + ... + km, so that all k are distinct positive integers and b = A001055(k1) + A001055(k2) + ... + A001055(km) becomes maximal. a(n) is the number of such partitions which attain this maximum.
1
1, 1, 1, 2, 1, 2, 1, 1, 3, 1, 2, 5, 2, 3, 1, 2, 3, 1, 2, 4, 1, 2, 5, 1, 2, 5, 1, 2, 5, 1, 2, 5, 1, 2, 4, 1, 1, 3, 7, 1, 3, 6, 1, 2, 5, 1, 1, 4, 1, 1, 3, 1, 11, 2, 4, 9, 2, 3, 7, 1, 2, 4, 7, 1, 3, 6, 1, 2, 4, 1, 1, 3, 1, 1, 2, 1, 6, 1, 2, 4, 1, 1, 3, 3, 1, 1, 1, 5, 5, 1
OFFSET
1,4
FORMULA
a(n) <= 1 + A066739(n) - A000041(n).
EXAMPLE
a(6) = 2:
6 = 1 + 2 + 3 and A001055(1) + A001055(2) + A001055(3) = 3;
6 = 2 + 4 and A001055(2) + A001055(4) = 3.
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas Scheuerle, Dec 09 2021
STATUS
approved