[go: up one dir, main page]

login
A359823
Dirichlet inverse of A359820, where A359820 is the characteristic function of numbers whose parity differs from the parity of their arithmetic derivative (A003415).
7
1, -1, 0, 1, 0, -1, 0, -1, -1, -1, 0, 2, 0, -1, -1, 1, 0, 1, 0, 2, -1, -1, 0, -3, -1, -1, 0, 2, 0, 1, 0, -1, -1, -1, -1, 0, 0, -1, -1, -3, 0, 1, 0, 2, 0, -1, 0, 4, -1, 1, -1, 2, 0, 1, -1, -3, -1, -1, 0, 1, 0, -1, 0, 1, -1, 1, 0, 2, -1, 1, 0, -2, 0, -1, 0, 2, -1, 1, 0, 4, 0, -1, 0, 1, -1, -1, -1, -3, 0, 3, -1, 2, -1, -1, -1, -5, 0
OFFSET
1,12
LINKS
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A359820(n/d) * a(d).
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A359820(n) = ((n+A003415(n))%2);
memoA359823 = Map();
A359823(n) = if(1==n, 1, my(v); if(mapisdefined(memoA359823, n, &v), v, v = -sumdiv(n, d, if(d<n, A359820(n/d)*A359823(d), 0)); mapput(memoA359823, n, v); (v)));
CROSSREFS
Cf. A000035, A003415, A359820, A359824 (parity of the terms).
Cf. also A359763 [= a(A003961(n))], A359780.
Sequence in context: A364043 A339933 A101659 * A373336 A074272 A328372
KEYWORD
sign
AUTHOR
Antti Karttunen, Jan 14 2023
STATUS
approved