[go: up one dir, main page]

login
A359601
Dirichlet inverse of A244042, where A244042(n) replaces 2's with 0's in the ternary representation of n.
2
1, 0, -3, -4, -3, 0, -1, 0, 0, -10, -9, 12, -13, -12, 9, 6, -9, 0, -1, 24, 3, -4, -3, 0, 8, 0, 0, -20, -27, 30, -31, -30, 27, -28, -21, 0, -37, -36, 39, 40, -39, 36, -37, 36, 0, -28, -27, -18, -30, 30, 27, 76, -27, 0, 53, 96, 3, -4, -3, -72, -1, 0, 0, 6, 69, 12, -13, 60, 9, 82, -9, 0, -1, 0, -24, 4, 15
OFFSET
1,3
LINKS
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A244042(n/d) * a(d).
a(n) = A359602(n) - A244042(n).
PROG
(PARI)
A244042(n) = fromdigits(apply(x->(x%2), digits(n, 3)), 3);
memoA359601 = Map();
A359601(n) = if(1==n, 1, my(v); if(mapisdefined(memoA359601, n, &v), v, v = -sumdiv(n, d, if(d<n, A244042(n/d)*A359601(d), 0)); mapput(memoA359601, n, v); (v)));
CROSSREFS
Cf. A056911 (positions of odd terms), A323239 (parity of terms), A337945.
Sequence in context: A260958 A260965 A278214 * A072681 A244042 A318840
KEYWORD
sign,base,easy,look
AUTHOR
Antti Karttunen, Jan 11 2023
STATUS
approved