[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359395
Least odd prime p in position n in the prime factorization of M(p) = 2^(p - 1) - 1.
0
3, 5, 17, 13, 71, 37, 157, 61, 211, 313, 1289, 241, 337, 181, 577, 601, 541, 1381, 421, 1201, 1009, 1621, 1873, 3433, 4561, 1801, 3301, 2161, 3061, 5281, 3361, 2521, 7393, 6481, 4201, 4621, 8737, 9181, 6301, 19501, 7561, 16633, 12241, 26881, 15601, 9241, 21001, 14281, 12601, 53551
OFFSET
1,1
LINKS
Carlos Rivera, Puzzle 1116. A358527, The Prime Puzzles & Problems Connection.
EXAMPLE
M(5) = 15 = 3*5 and 5 is in second position in the prime factorization of M(5), and no lesser odd prime satisfies this, so a(2) = 5.
M(17) = 65535 = 3*5*17*257 and 17 is in third position in the prime factorization of M(17), and no lesser odd prime satisfies this, so a(3) = 17.
MATHEMATICA
f[n_] := Module[{p = Prime[n]}, Count[Prime[Range[n - 1]], _?(PowerMod[2, p - 1, #] == 1 &)] + 1]; f[1] = 0; With[{s = Array[f, 4000]}, ind = TakeWhile[ FirstPosition[s, #] & /@ Range[Max[s]] // Flatten, NumberQ ]; Prime[ind]] (* Amiram Eldar, Jan 02 2023 *)
PROG
(PARI) isok(p, n) = my(f=factor(2^(p-1) - 1, p+1)); if (#f~ < n, 0, f[n, 1] == p);
a(n) = my(p=3); while(!isok(p, n), p=nextprime(p+1)); p; \\ Michel Marcus, Jan 13 2023
CROSSREFS
Sequence in context: A158895 A085418 A339944 * A292008 A139427 A360802
KEYWORD
nonn
AUTHOR
Jean-Marc Rebert, Dec 31 2022
STATUS
approved