[go: up one dir, main page]

login
A359355
a(n) = A359107(2*n, n) = Sum_{j=0..n} Stirling2(2*n, j) = Sum_{j=0..n} A048993(2*n, j).
2
1, 1, 8, 122, 2795, 86472, 3403127, 164029595, 9433737120, 635182667816, 49344452550230, 4371727233798927, 437489737355466560, 49048715505983309703, 6116937802946210183545, 843220239072837883168510, 127757559136845878072576947, 21166434937698025552654090472
OFFSET
0,3
COMMENTS
a(n) is the number of partitions of an 2n-set that contain at most n nonempty subsets.
LINKS
FORMULA
a(n) = A102661(2n,n) for n >= 1. - Alois P. Heinz, Jun 13 2023
MAPLE
b:= proc(n) option remember; `if`(n=0, 1,
add(expand(b(n-j)*binomial(n-1, j-1)*x), j=1..n))
end:
a:= n-> (p-> add(coeff(p, x, i), i=0..n))(b(2*n, 0)):
seq(a(n), n=0..17); # Alois P. Heinz, Jun 13 2023
PROG
(PARI) a(n) = sum(j=0, n, stirling(2*n, j, 2)); \\ Michel Marcus, Dec 27 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Dec 27 2022
STATUS
approved