Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Dec 31 2022 14:53:24
%S 1,1,1,3,4,7,13,20,32,51,83,130,206,320,496,759,1171,1786,2714,4104,
%T 6193,9286,13920,20737,30865,45721,67632,99683,146604,214865,314782,
%U 459136,668867,972425,1410458,2040894,2950839,4253713,6123836,8801349,12627079
%N Number of twice-partitions of n into distinct strict partitions.
%C A twice-partition of n (A063834) is a sequence of integer partitions, one of each part of an integer partition of n.
%H Andrew Howroyd, <a href="/A358914/b358914.txt">Table of n, a(n) for n = 0..100</a>
%e The a(1) = 1 through a(6) = 13 twice-partitions:
%e ((1)) ((2)) ((3)) ((4)) ((5)) ((6))
%e ((21)) ((31)) ((32)) ((42))
%e ((2)(1)) ((3)(1)) ((41)) ((51))
%e ((21)(1)) ((3)(2)) ((321))
%e ((4)(1)) ((4)(2))
%e ((21)(2)) ((5)(1))
%e ((31)(1)) ((21)(3))
%e ((31)(2))
%e ((3)(21))
%e ((32)(1))
%e ((41)(1))
%e ((3)(2)(1))
%e ((21)(2)(1))
%t twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
%t Table[Length[Select[twiptn[n],UnsameQ@@#&&And@@UnsameQ@@@#&]],{n,0,10}]
%o (PARI) seq(n,k)={my(u=Vec(eta(x^2 + O(x*x^n))/eta(x + O(x*x^n))-1)); Vec(prod(k=1, n, my(c=u[k]); sum(j=0, min(c,n\k), x^(j*k)*c!/(c-j)!, O(x*x^n))))} \\ _Andrew Howroyd_, Dec 31 2022
%Y The unordered version is A050342, non-strict A261049.
%Y This is the distinct case of A270995.
%Y The case of strictly decreasing sums is A279785.
%Y The case of constant sums is A279791.
%Y For distinct instead of weakly decreasing sums we have A336343.
%Y This is the twice-partition case of A358913.
%Y A001970 counts multiset partitions of integer partitions.
%Y A055887 counts sequences of partitions.
%Y A063834 counts twice-partitions.
%Y A330462 counts set systems by total sum and length.
%Y A358830 counts twice-partitions with distinct lengths.
%Y Cf. A000009, A000219, A075900, A271619, A296122, A304969, A321449, A336342, A358901, A358906, A358907.
%K nonn
%O 0,4
%A _Gus Wiseman_, Dec 11 2022
%E Terms a(26) and beyond from _Andrew Howroyd_, Dec 31 2022