Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Feb 19 2024 22:52:54
%S 2,3,5,11,19,37,73,109,1459,2179,2917,4357,8713
%N A sequence of sorted primes 2 = p_1 < p_2 < ... < p_m such that (p_i + 1)/2 divides the product p_1*p_2*...*p_(i-1) of the earlier primes and each prime factor of (p_i-1)/2 is a prime factor of the product.
%C The sequence was used, together with A358718 and A358719, by Ferrari and Sillari (Preprint-2022) to prove that there are at least three solutions n to phi(n+k) = 2* phi(n) for all even k <= 4*10^58.
%C I have checked up to 10^8 and found no more terms.
%C Prime a(14) does not exist, which can be established by going over the divisors d of the product a(1)*...*a(13) and testing 2*d-1 as a candidate for a(14). - _Max Alekseyev_, Feb 19 2024
%H M. Ferrari and L. Sillari, <a href="https://arxiv.org/abs/2110.05401">On the minimal number of solutions of the equation phi(n+k) = M*phi(n), M=1,2</a>, arXiv:2110.05401 [math.NT], 2021.
%t s = {2}; step[s_] := Module[{p = NextPrime[s[[-1]]], r = Times @@ s}, While[! Divisible[r, (p + 1)/2] || ! Divisible[r, Times @@ FactorInteger[(p - 1)/2][[;; , 1]]], p = NextPrime[p]]; Join[s, {p}]]; Nest[step, s, 12] (* _Amiram Eldar_, Nov 30 2022 *)
%Y Similar to A001259.
%Y See also A358718 and A358719.
%K nonn,full,fini
%O 1,1
%A _Lorenzo Sillari_, Nov 28 2022
%E Keywords 'full' and 'fini' added by _Max Alekseyev_, Feb 19 2024