[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358659
Decimal expansion of the asymptotic mean of the ratio between the number of exponential unitary divisors and the number of exponential divisors.
2
9, 8, 4, 8, 8, 3, 6, 4, 1, 8, 7, 7, 2, 2, 8, 2, 9, 4, 0, 9, 5, 3, 7, 0, 1, 3, 8, 0, 4, 8, 9, 6, 1, 1, 3, 7, 6, 4, 7, 3, 1, 6, 3, 2, 2, 2, 2, 7, 0, 5, 8, 1, 3, 4, 5, 5, 0, 0, 6, 3, 6, 2, 3, 5, 5, 0, 2, 2, 3, 9, 6, 8, 0, 6, 5, 9, 0, 8, 2, 3, 8, 0, 0, 8, 1, 8, 9, 3, 8, 0, 9, 5, 5, 7, 4, 0, 8, 7, 6, 9, 1, 3, 3, 4, 4
OFFSET
0,1
LINKS
Nicusor Minculete and László Tóth, Exponential unitary divisors, Annales Univ. Sci. Budapest., Sect. Comp. Vol. 35 (2011), pp. 205-216.
FORMULA
Equals lim_{m->oo} (1/m) Sum_{k=1..m} A278908(k)/A049419(k).
Equals Product_{p prime} (1 + Sum_{e >= 4} (r(e) - r(e-1))/p^e), where r(e) = A278908(e)/A049419(e).
EXAMPLE
0.984883641877228294095370138048961137647316322227058...
MATHEMATICA
r[n_] := 2^PrimeNu[n]/DivisorSigma[0, n]; $MaxExtraPrecision = 500; m = 500; f[x_] := Log[1 + Sum[x^e*(r[e] - r[e - 1]), {e, 4, m}]]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[Exp[f[1/2] + NSum[Indexed[c, k]*(PrimeZetaP[k] - 1/2^k)/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 120][[1]]
CROSSREFS
Similar sequences: A307869, A308042, A308043.
Sequence in context: A200117 A019889 A243266 * A010548 A011458 A343057
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Nov 25 2022
STATUS
approved