[go: up one dir, main page]

login
A357504
Numbers that are the sum of two distinct triangular numbers.
2
1, 3, 4, 6, 7, 9, 10, 11, 13, 15, 16, 18, 21, 22, 24, 25, 27, 28, 29, 31, 34, 36, 37, 38, 39, 42, 43, 45, 46, 48, 49, 51, 55, 56, 57, 58, 60, 61, 64, 65, 66, 67, 69, 70, 72, 73, 76, 78, 79, 81, 83, 84, 87, 88, 91, 92, 93, 94, 97, 99, 100, 101, 102, 105, 106, 108
OFFSET
1,2
COMMENTS
This sequence differs from A020756 in excluding the terms that are twice a triangular number and that cannot be expressed as a sum of two distinct triangular numbers: 0, 2, 12, 20, 30, 90, 110, 132, ... = 2*A357529.
FORMULA
a(n) = (A339952(n) - 1)/4.
MATHEMATICA
TriangularQ[n_]:=IntegerQ[(Sqrt[1+8n]-1)/2]; A000217[n_]:=n(n+1)/2; a={}; kn=0; For[k=0, k<=110, k++, For[h=0, A000217[h]<k/2, h++, If[TriangularQ[k - A000217[h]] && k>kn, AppendTo[a, k]; kn=k]]]; a (* Stefano Spezia, Nov 06 2022 *)
CROSSREFS
Cf. A000217 (subsequence, excluding 0), A020756 (supersequence), A339952, A357505 (complement).
Cf. A357529.
Sequence in context: A298109 A184429 A248185 * A130269 A290730 A369856
KEYWORD
nonn,easy
AUTHOR
Stefano Spezia, Oct 01 2022
STATUS
approved