[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356411
Sum of powers of roots of x^3 - x^2 - x - 3.
0
3, 1, 3, 13, 19, 41, 99, 197, 419, 913, 1923, 4093, 8755, 18617, 39651, 84533, 180035, 383521, 817155, 1740781, 3708499, 7900745, 16831587, 35857829, 76391651, 162744241, 346709379, 738628573, 1573570675, 3352327385, 7141783779
OFFSET
0,1
COMMENTS
a(n) is the sum of the n-th powers of the three roots of x^3 - x^2 - x - 3. These roots are c1 = 2.130395..., c2 = -0.5651977... - i*1.0434274..., and c3 = -0.5651977... + i*1.0434274..., and so a(n) = c1^n + c2^n + c3^n. The real parts of c2 and c3 are A273065.
a(n) can also be determined by Vieta's formulas and Newton's identities. For example, a(3) by definition is c1^3 + c2^3 + c3^3, and from Newton's identities this equals e1^3 - 3*e1*e2 + 3*e3 for e1, e2, e3 the elementary symmetric polynomials of x^3 - x^2 - x - 3. From Vieta's formulas we have e1 = 1, e2 = -1, and e3 = 3, giving us e1^3 - 3*e1*e2 + 3*e3 = 1 + 3 + 9 = 13, as expected.
FORMULA
a(n) = a(n-1) + a(n-2) + 3*a(n-3) with a(0)=3, a(1)=1, a(2) = 3.
G.f.: (3 - 2*x - x^2)/(1 - x - x^2 - 3*x^3).
EXAMPLE
For n=3, a(3) = (2.130395...)^3 + (-0.5651977... - i*1.0434274...)^3 + (-0.5651977... + i*1.0434274...)^3 = 13.
MATHEMATICA
LinearRecurrence[{1, 1, 3}, {3, 1, 3}, 40]
PROG
(PARI) polsym(x^3 - x^2 - x - 3, 35) \\ Joerg Arndt, Aug 11 2022
CROSSREFS
Cf. A103143, A123102, A247594, A356463, A273065 (Re c2,c3).
Sequence in context: A216021 A327149 A351372 * A355793 A173424 A143081
KEYWORD
nonn,easy
AUTHOR
Greg Dresden, Aug 05 2022
STATUS
approved