[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355962
Primes p such that (p+7)^(p-1) == 1 (mod p^2).
6
2, 3, 229, 701, 31446553, 1016476523, 8918351831
OFFSET
1,1
COMMENTS
a(8) > 10^13 if it exists. - Jason Yuen, May 12 2024
Equivalently, primes p such that 7^p == p+7 (mod p^2), or Fermat quotient q_p(7) == 1/7 (mod p). - Max Alekseyev, Sep 16 2024
PROG
(PARI) forprime(p=1, , if(Mod(p+7, p^2)^(p-1)==1, print1(p, ", ")))
CROSSREFS
(p+k)^(p-1) == 1 (mod p^2): A355959 (k=2), A355960 (k=5), A355961 (k=6), A355963 (k=8), A355964 (k=9), A355965 (k=10).
Sequence in context: A037275 A142960 A117324 * A037059 A302398 A087313
KEYWORD
nonn,hard,more
AUTHOR
Felix Fröhlich, Jul 21 2022
EXTENSIONS
a(7) from Jason Yuen, May 12 2024
STATUS
approved