[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355960
Primes p such that (p+5)^(p-1) == 1 (mod p^2).
6
3, 23, 1574773
OFFSET
1,1
COMMENTS
Equivalently, primes p such that 5^p == p+5 (mod p^2), or Fermat quotient q_p(5) == 1/5 (mod p). - Max Alekseyev, Sep 16 2024
PROG
(PARI) forprime(p=1, , if(Mod(p+5, p^2)^(p-1)==1, print1(p, ", ")))
CROSSREFS
(p+k)^(p-1) == 1 (mod p^2): A355959 (k=2), A355961 (k=6), A355962 (k=7), A355963 (k=8), A355964 (k=9), A355965 (k=10).
Sequence in context: A113577 A224700 A352333 * A264929 A204578 A120085
KEYWORD
nonn,hard,more,bref
AUTHOR
Felix Fröhlich, Jul 21 2022
STATUS
approved