[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Dirichlet inverse of A009194, the greatest common divisor of sigma(n) and n, where sigma is the sum of divisors function.
2

%I #9 Jul 20 2022 18:43:34

%S 1,-1,-1,0,-1,-4,-1,0,0,0,-1,7,-1,0,-1,0,-1,8,-1,1,1,0,-1,-10,0,0,0,

%T -25,-1,10,-1,0,-1,0,1,15,-1,0,1,-8,-1,6,-1,-1,2,0,-1,16,0,2,-1,1,-1,

%U -6,1,46,1,0,-1,-9,-1,0,0,0,1,10,-1,1,-1,2,-1,-29,-1,0,4,-1,1,6,-1,16,0,0,-1,29,1,0,-1,2,-1,-8

%N Dirichlet inverse of A009194, the greatest common divisor of sigma(n) and n, where sigma is the sum of divisors function.

%H Antti Karttunen, <a href="/A355829/b355829.txt">Table of n, a(n) for n = 1..16384</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%F a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A009194(n/d) * a(d).

%t s[n_] := GCD[n, DivisorSigma[1, n]]; a[1] = 1; a[n_] := - DivisorSum[n, a[#] * s[n/#] &, # < n &]; Array[a, 100] (* _Amiram Eldar_, Jul 20 2022 *)

%o (PARI)

%o A009194(n) = gcd(n, sigma(n));

%o memoA355829 = Map();

%o A355829(n) = if(1==n,1,my(v); if(mapisdefined(memoA355829,n,&v), v, v = -sumdiv(n,d,if(d<n,A009194(n/d)*A355829(d),0)); mapput(memoA355829,n,v); (v)));

%Y Cf. A000203, A009194.

%Y Cf. also A355828.

%K sign

%O 1,6

%A _Antti Karttunen_, Jul 20 2022