[go: up one dir, main page]

login
A355780
E.g.f. satisfies A(x) = (1 + x)^(2 * A(x)).
1
1, 2, 10, 96, 1352, 25400, 597816, 16941568, 561993344, 21372060672, 916910785920, 43817650647936, 2308500130055808, 132941831957885184, 8308594453077321984, 560108109905112238080, 40514005700203717945344, 3129925644058623770173440
OFFSET
0,2
FORMULA
E.g.f.: exp( -LambertW(-2 * log(1+x)) ).
a(n) = Sum_{k=0..n} 2^k * (k+1)^(k-1) * Stirling1(n,k).
From Vaclav Kotesovec, Jul 17 2022: (Start)
E.g.f.: -LambertW(-2*log(1+x)) / (2*log(1+x)).
a(n) ~ sqrt(2) * n^(n-1) / ((exp(exp(-1)/2) - 1)^(n - 1/2) * exp(n - 3/2 + exp(-1)/4)). (End)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-2*log(1+x)))))
(PARI) a(n) = sum(k=0, n, 2^k*(k+1)^(k-1)*stirling(n, k, 1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 16 2022
STATUS
approved