[go: up one dir, main page]

login
A355727
First of four consecutive primes p, q, r, s where q*s == p (mod r).
1
47, 139, 167, 257, 421, 557, 587, 647, 1021, 1051, 1217, 1601, 1759, 2957, 3803, 3911, 4007, 4397, 4423, 4463, 5351, 5471, 6257, 6691, 6857, 6949, 7577, 8081, 9109, 9697, 10223, 10847, 11927, 12101, 12601, 12911, 13669, 13711, 13751, 14537, 14621, 16217, 16607, 16903, 17021, 17359, 17477, 17911
OFFSET
1,1
COMMENTS
Prime(i) is a term if A001223(i+1)*A001223(i+2) = A001223(i) + A001223(i+1).
LINKS
EXAMPLE
a(3) = 167 is a term because 167, 173, 179, 181 are consecutive primes with 173*181 == 167 (mod 179).
MAPLE
p2:= 2: p3:= 3: p4:=5: count:= 0: R:= NULL:
while count < 100 do
p1:= p2; p2:= p3; p3:= p4; p4:= nextprime(p4);
if p2*p4 -p1 mod p3 = 0 then
count:= count+1;
R:= R, p1;
fi;
od:
R;
CROSSREFS
Cf. A001223.
Sequence in context: A288408 A095311 A005112 * A062637 A212374 A040984
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Jul 15 2022
STATUS
approved