[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355614
Number A(n,k) of n-tuples (p_1, p_2, ..., p_n) of positive integers such that p_{i-1} <= p_i <= i^k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
3
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 5, 1, 1, 1, 8, 30, 14, 1, 1, 1, 16, 188, 340, 42, 1, 1, 1, 32, 1176, 9280, 5235, 132, 1, 1, 1, 64, 7280, 249776, 804322, 102756, 429, 1, 1, 1, 128, 44640, 6518784, 119088660, 109506040, 2464898, 1430, 1
OFFSET
0,9
LINKS
EXAMPLE
A(2,2) = 4: (1,1), (1,2), (1,3), (1,4).
A(2,3) = 8: (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (1,7), (1,8).
A(3,1) = 5: (1,1,1), (1,1,2), (1,1,3), (1,2,2), (1,2,3).
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 2, 4, 8, 16, 32, ...
1, 5, 30, 188, 1176, 7280, ...
1, 14, 340, 9280, 249776, 6518784, ...
1, 42, 5235, 804322, 119088660, 16633660072, ...
MAPLE
A:= proc(n, k) option remember; `if`(n=0, 1, add(
A(j-1, k)*(-1)^(n-j)*binomial(j^k, n-j+1), j=1..n))
end:
seq(seq(A(n, d-n), n=0..d), d=0..12);
CROSSREFS
Columns k=0-2 give: A000012, A000108, A209440.
Rows n=1-2 give: A000012, A000079.
Main diagonal gives A355613.
Sequence in context: A291118 A245184 A284414 * A140274 A095231 A303697
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 09 2022
STATUS
approved