[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355298
Primes p such that q divides p + 1, r divides q^2 + q + 1, s divides r^2 + r + 1, and p divides s^2 + s + 1 for some primes q, r, and s.
0
3, 13, 61, 127, 399403
OFFSET
1,1
COMMENTS
There are no other terms below 2^24.
If rad(n)^2 = sigma(n), where rad(n) = A007927(n) is the largest squarefree number dividing n and sigma(n) = A000203(n) is the sum of divisors of n, and there exists just one odd prime factor p dividing n exactly once, then p must belong to A354427 or this sequence.
LINKS
Tomohiro Yamada, On a problem of De Koninck, Moscow Journal of Combinatorics and Number Theory, 10:3 (2021), 249-260, correction, 10:4 (2021), 339.
EXAMPLE
61 is a term since 61 + 1 = 2 * 31, 31^2 + 31 + 1 = 3 * 331, 3^2 + 3 + 1 = 13, and 13^2 + 13 + 1 = 3 * 61.
PROG
(PARI) is(p)={my(W, V1, V2, V3, V4, q1, q2, q3, q4, i1, i2, i3, i4, l1, l2, l3, l4); W=0; V1=factor(p+1); l1=length(V1[, 1]); for(i1=1, l1, q1=V1[i1, 1]; V2=factor(q1^2+q1+1); l2=length(V2[, 1]); for(i2=1, l2, q2=V2[i2, 1]; V3=factor(q2^2+q2+1); l3=length(V3[, 1]); for(i3=1, l3, q3=V3[i3, 1]; V4=factor(q3^2+q3+1); l4=length(V4[, 1]); for(i4=1, l4, q4=V4[i4, 1]; if(q4==p, W=[p, q1, q2, q3]))))); W}
CROSSREFS
KEYWORD
nonn,more,hard
AUTHOR
Tomohiro Yamada, Jun 28 2022
STATUS
approved