[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n, k) = Sum_{j=k..n} binomial(n, j)*E2(j, j-k), where E2 are the Eulerian numbers A201637. Triangle read by rows, T(n, k) for 0 <= k <= n.
0

%I #10 Apr 30 2021 10:56:02

%S 1,1,1,1,4,1,1,15,11,1,1,64,96,26,1,1,325,824,448,57,1,1,1956,7417,

%T 6718,1779,120,1,1,13699,71595,96633,43411,6429,247,1,1,109600,746232,

%U 1393588,944618,243928,21898,502,1,1,986409,8403000,20600856,19521210,7739362,1250774,71742,1013,1

%N T(n, k) = Sum_{j=k..n} binomial(n, j)*E2(j, j-k), where E2 are the Eulerian numbers A201637. Triangle read by rows, T(n, k) for 0 <= k <= n.

%e Triangle starts:

%e [0] 1

%e [1] 1, 1

%e [2] 1, 4, 1

%e [3] 1, 15, 11, 1

%e [4] 1, 64, 96, 26, 1

%e [5] 1, 325, 824, 448, 57, 1

%e [6] 1, 1956, 7417, 6718, 1779, 120, 1

%e [7] 1, 13699, 71595, 96633, 43411, 6429, 247, 1

%e [8] 1, 109600, 746232, 1393588, 944618, 243928, 21898, 502, 1

%e [9] 1, 986409, 8403000, 20600856, 19521210, 7739362, 1250774, 71742, 1013, 1

%p T := (n, k) -> add(binomial(n, r)*combinat:-eulerian2(r, r-k), r = k..n):

%p seq(seq(T(n, k), k = 0..n), n = 0..9);

%Y Row sums: A084262.

%Y Cf. A046802 (Eulerian first order).

%K nonn,tabl

%O 0,5

%A _Peter Luschny_, Apr 30 2021