[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343735
Odd palindromes having more divisors than all smaller odd palindromes.
2
1, 3, 9, 33, 99, 525, 3003, 5445, 5775, 50505, 53235, 171171, 525525, 5073705, 18999981, 50555505, 51666615, 512272215, 513828315, 5026226205, 5053553505, 5184994815, 5708778075, 52252425225, 502299992205, 502875578205, 524241142425, 579024420975
OFFSET
1,2
COMMENTS
A000005(a(n)) = A343736(n).
Conjectures:
(1) All terms after a(1)=1 are multiples of 3.
(2) The number of terms after a(30)=34418522581443 that are not multiples of 5 is finite but not zero.
LINKS
Jon E. Schoenfield, Table of n, a(n) for n = 1..49
EXAMPLE
no. of
n a(n) prime factorization divisors
-- ---------- --------------------------------- --------
1 1 - 1
2 3 3 2
3 9 3^2 3
4 33 3 * 11 4
5 99 3^2 * 11 6
6 525 3 * 5^2 * 7 12
7 3003 3 * 7 * 11 * 13 16
8 5445 3^2 * 5 * 11^2 18
9 5775 3 * 5^2 * 7 * 11 24
10 50505 3 * 5 * 7 * 13 * 37 32
11 53235 3^2 * 5 * 7 * 13^2 36
12 171171 3^2 * 7 * 11 * 13 * 19 48
13 525525 3 * 5^2 * 7^2 * 11 * 13 72
14 5073705 3^3 * 5 * 7^2 * 13 * 59 96
15 18999981 3^3 * 7 * 11 * 13 * 19 * 37 128
16 50555505 3 * 5 * 7^2 * 11 * 13^2 * 37 144
17 51666615 3^2 * 5 * 7 * 11 * 13 * 31 * 37 192
18 512272215 3^3 * 5 * 7^3 * 13 * 23 * 37 256
19 513828315 3^2 * 5 * 7 * 11^2 * 13 * 17 * 61 288
20 5026226205 3 * 5 * 7^2 * 11 * 13 * 17 * 29 * 97 384
CROSSREFS
Cf. A000005, A002113 (palindromes), A076888 (their number of divisors), A029950 (odd palindromes), A344422, A345250, A343736.
Sequence in context: A281973 A219557 A094538 * A037129 A148987 A176812
KEYWORD
nonn,base
AUTHOR
Jon E. Schoenfield, Jun 22 2021
STATUS
approved