[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n-digit undulating alternating primes.
1

%I #19 Apr 27 2021 07:54:55

%S 4,9,23,49,175,321,1189,3025,12111,28492,113409,251513,1068440,

%T 2629980,11690210,28498852,128871588,298890814,1309837146

%N Number of n-digit undulating alternating primes.

%C a(n) is the number of n-digit terms in A343590.

%C a(n) <= A057333(n).

%o (Python)

%o def f(w):

%o for s in w:

%o for t in range(int(s[-1])+1,10,2):

%o yield s+str(t)

%o def g(w):

%o for s in w:

%o for t in range(1-int(s[-1])%2,int(s[-1]),2):

%o yield s+str(t)

%o def A343676(n):

%o c = 0

%o for d in '123456789':

%o x = d

%o for i in range(1,n):

%o x = g(x) if i % 2 else f(x)

%o c += sum(1 for p in x if isprime(int(p)))

%o if n > 1:

%o y = d

%o for i in range(1,n):

%o y = f(y) if i % 2 else g(y)

%o c += sum(1 for p in y if isprime(int(p)))

%o return c

%Y Cf. A002385, A030144, A057333, A059168, A343590, A343675.

%K nonn,base,more

%O 1,1

%A _Chai Wah Wu_, Apr 25 2021

%E a(18)-a(19) from _Martin Ehrenstein_, Apr 27 2021